
cells

Review

Towards Physiologic Culture Approaches to Improve Standard
Cultivation of Mesenchymal Stem Cells

Ilias Nikolits †, Sabrina Nebel † , Dominik Egger * , Sebastian Kreß and Cornelia Kasper

����������
�������

Citation: Nikolits, I.; Nebel, S.; Egger,

D.; Kreß, S.; Kasper, C. Towards

Physiologic Culture Approaches to

Improve Standard Cultivation of

Mesenchymal Stem Cells. Cells 2021,

10, 886. https://doi.org/10.3390/

cells10040886

Academic Editor: Mehdi Najar

Received: 23 March 2021

Accepted: 12 April 2021

Published: 13 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for Cell and Tissue Culture Technology, Department of Biotechnology, University of Natural Resources
and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; ilias.nikolits@boku.ac.at (I.N.);
sabrina.nebel@boku.ac.at (S.N.); sebastian.kress@boku.ac.at (S.K.); cornelia.kasper@boku.ac.at (C.K.)
* Correspondence: dominik.egger@boku.ac.at
† These authors contributed equally to this work.

Abstract: Mesenchymal stem cells (MSCs) are of great interest for their use in cell-based therapies
due to their multipotent differentiation and immunomodulatory capacities. In consequence of
limited numbers following their isolation from the donor tissue, MSCs require extensive expansion
performed in traditional 2D cell culture setups to reach adequate amounts for therapeutic use.
However, prolonged culture of MSCs in vitro has been shown to decrease their differentiation
potential and alter their immunomodulatory properties. For that reason, preservation of these
physiological characteristics of MSCs throughout their in vitro culture is essential for improving
the efficiency of therapeutic and in vitro modeling applications. With this objective in mind, many
studies already investigated certain parameters for enhancing current standard MSC culture protocols
with regard to the effects of specific culture media components or culture conditions. Although there
is a lot of diversity in the final therapeutic uses of the cells, the primary stage of standard isolation
and expansion is imperative. Therefore, we want to review on approaches for optimizing standard
MSC culture protocols during this essential primary step of in vitro expansion. The reviewed studies
investigate and suggest improvements focused on culture media components (amino acids, ascorbic
acid, glucose level, growth factors, lipids, platelet lysate, trace elements, serum, and xenogeneic
components) as well as culture conditions and processes (hypoxia, cell seeding, and dissociation
during passaging), in order to preserve the MSC phenotype and functionality during the primary
phase of in vitro culture.

Keywords: mesenchymal stem cells; physiologic cultivation; optimization cultivation

1. Introduction

Cell-based therapies aim to repair or regenerate defective tissues or organs due to
physical or congenital damage, ageing, and degenerative diseases. From a regulatory
viewpoint cell-based therapies can be divided between minimally manipulated cells for
homologous use like transplants or transfusions and somatic cell, gene therapy, and tissue
engineered products, which are referred to as Advanced Therapy Medicinal Products
(ATMPs) by EU authorities [1]. These are considered medicines and need to comply to
quality, safety, and efficacy standards before getting a market authorization. Generally,
when referring to cell-based therapies, not only cells as medicinal product, but also products
derived from them are included [2].

One possible treatment approach in cell-based therapies is the engraftment of cells
into the damaged site to replace or restore the defective cells or tissue regarded as classical
cell therapy. Another mechanism is based on the stimulating effect of trophic factors,
through targeted drug delivery or cell genetic manipulation, to promote endogenous self-
regeneration of the injured tissue. Cell-based therapies are a very promising strategy for
the treatment of many severe and until recently considered incurable vascular, neurological,
autoimmune, ophthalmologic, and skeletal diseases [3].
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Among the different cell types tested for their therapeutic potential, stem cells are the
most prominent, considering their intrinsic self-renewal and differentiation capacities [4].
Particularly, mesenchymal stem cells (MSCs) are of great interest for their use in cell-based
therapies. MSCs are highly proliferative multipotent stromal cells that can differentiate into
the mesodermal cell lineage [5]. Due to the therapeutic potential of MSCs, many studies
focus on their characterization and identification. According to the International Society for
Cellular Therapy (ISCT), MSCs must be plastic-adherent and differentiate into osteoblasts,
chondroblasts, and adipocytes when cultured in vitro. In addition, they should express
CD90, CD73, and CD105 surface markers and should not express CD34, CD45, CD14 or
CD11b, CD19 or CD79A and HLA-DR surface molecules [6]. MSCs can be derived from
various tissue sources such as the bone marrow [7], adipose tissue [8], umbilical cord [9],
peripheral blood [10], and dental pulp [11], but the number of primary MSCs isolated from
a donor tissue is rather limited [5] and source-dependent [12].

With the introduction of cell culture techniques, traditional two-dimensional (2D) cell
culture has been for decades the backbone method for medical and biological research and
drug development due to its simplicity and robustness. However, the static and planar
conditions of 2D culture fail to simulate the physiological environment of the cells. For that
reason, during the last years, concerns over the biological relevance and reproducibility of
in vitro culture techniques have led to the development of advanced three-dimensional
(3D) and dynamic cell culture methods. These methods serve as better models for the
representation of in vivo physiological conditions [13,14], as well as platforms for up-
scaling production of cells for clinical applications [15,16]. As a result, several 3D cell
culture techniques now exist, from multicellular spheroids/organoids [17,18] and cell-
laden biomaterials [19–22], to dynamic bioreactor systems [23–26] and organ/body on a
chip systems [27–29]. It has been shown that such 3D culture systems preserve many char-
acteristics and properties that resembled MSC behavior and differentiation in vivo [30–32].
Therefore, the gained results are more relevant for the translation into clinical applicability.
However, these 3D advanced cell cultures require high numbers of cells [16], are more
complex to establish and maintain, and are therefore more laborious.

Due to the fact that MSCs are a very limited adult tissue population [33,34], following
their isolation from donor tissue, harvested primary MSCs should be expanded first in
2D culture setups, to reach adequate numbers for use in various in vitro modelling and
therapeutic applications [5]. However, prolonged culture of MSCs in vitro in 2D systems
has shown to decrease their differentiation potential [35,36] and alter their phenotype [37]
and immunomodulatory properties [38]. In order to improve the relevance of in vitro mod-
elling and efficiency of therapeutic applications, it is essential to preserve the physiological
properties and characteristics of MSCs throughout their in vitro culture.

In view of this, there is a considerable research focus on the optimization of culture
conditions and protocols for MSCs. Since there is yet no medium that is as close to
natural in vivo fluids to support physiological MSC culture, specialized culture media are
composed based on the cell type, type of culture, and focus of analysis. Additional focus
is put on the effects of other cell culture variables, including physiochemical conditions
and subculture protocols. As a result, between different cell culture laboratories, there is
divergence on these culture variables. Therefore, it is necessary to define what constitutes an
“optimal practice” for maintaining the physiological status of MSCs, during their primary
step of in vitro 2D expansion. Further, during optimization of cultivation procedures
considerations on other markers of success next to population growth should be considered
to circumvent potentially highly proliferative, but severely altered cell populations. In
a recent position statement, the ISCT underlines that MSCs often lose their functional
properties during in vitro expansion, and it is suggested to verify relevant functionalities
of MSCs by applying a matrix of functional assays based on the later therapeutic use [39].
Therefore, we want to review on optimizing approaches for standard 2D in vitro expansion
of human MSCs, focusing on culture media components (amino acids, ascorbic acid,
glucose level, growth factors, lipids and fatty acids, platelet lysate, trace elements, serum,



Cells 2021, 10, 886 3 of 33

and xenogeneic components) as well as culture conditions and processes (hypoxia, seeding
density and cell dissociation during passaging).

2. Basal Media for Isolation and Expansion

In vitro culture of MSCs is performed using a defined basal medium. Several basal
media with different formulations are commercially available for culture of human MSCs,
and the choice of basal media used varies between different laboratories. These media
primarily contain glucose, amino acids, and trace elements which are necessary for cellular
growth and survival. Regarding the selection of basal medium for optimal expansion
MSCs, Sotiropoulou et al., cultured primary bone marrow mononuclear cells and passaged
bone marrow MSCs (BM-MSCs) in the presence of different media (see Table 1). According
to their results, cultures of primary and passaged MSCs in aMEM/GL and aMEM/L-G
media generated the highest number of cells, with minor differences in their phenotype
over subsequent passages [40]. In another study comparing 4 different basal media,
adipose tissue MSCs showed increased proliferation when aMEM, but also DMEM/LG,
were used as basal media, without changes in their morphology and viability during
subsequent passages [41]. In a similar study comparing different culture media, a variation
of “Verfaillie” medium with DMEM/HG/L-G yielded higher number of adherent MSCs
from primary mononuclear bone marrow cell populations and higher proliferation rate of
BM-MSCs at early passages, compared to other media formulations, including aMEM/L-G
and DMEM/LG/L-G based media [42]. In addition, studies comparing different types
of media with BM-MSCs reported significant changes in their phenotypic expression
profile [42,43], in contrast with a study using adipose-derived MSCs where different basal
media did not alter the MSC specific marker expression after multiple passages [41]. As
indicated by the literature, the optimal choice of basal media can vary, depending on the
type and of MSCs cultured, although in general, aMEM based media have been indicated
as the most suitable for isolation and expansion of MSCs. Furthermore, evaluation of the
optimal choice of basal media should not only depend on its effect on the proliferative
capacity of MSCs, but also on the preservation of their intrinsic characteristics. Researches
should test and consider both aspects regarding their choice of basal media for their MSC
cultures.

Table 1. Different types of basal media.

Media Name Description

DMEM Dulbecco’s modified Eagle’s medium (MEM)

DMEM/LG/L-G Dulbecco’s MEM (DMEM) with 1000 mg/mL
glucose and L-glutamine

DMEM/HG/L-G DMEM with 4500 mg/mL glucose and
L-glutamine

DMEM/HG/GL DMEM with 4500 mg/mL glucose and
Glutamax

IMDM Iscove’s modified Dulbecco’s medium with
L-glutamine

aMEM MEM alpha
aMEM/L-G MEM alpha with L-glutamine
aMEM/GL MEM alpha with Glutamax

3. Glucose

Glucose is a basic source of energy for the cells and is involved in the synthesis of pro-
teins and lipids. In vivo, plasma glucose concentration for healthy people ranges between
700–1000 mg/L throughout the day, and it does not exceed 1600 mg/L after meals. Glucose
plays an essential role in survival, metabolism, and physiological function of MSCs. In
cell culture media formulations glucose concentration ranges from 1000 mg/L to resemble
physiological in vivo conditions, up to 10,000 mg/L. Culture media formulations with
glucose concentrations higher than 1000 mg/L simulate in vivo diabetic conditions [44].
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Due to the highly glycolytic phenotype of MSCs, glucose is more rapidly consumed and
its depletion has stronger effects on the cells compared to other nutrients and serum [45].
According to the literature however, the effects of the amount glucose on MSC cultures
are diverse, depending on the metabolic activity and the type of MSCs. Most studies
under normoxic culture conditions support that high glucose concentration (5000 mg/L) in
the culture media can suppress proliferation of bone marrow [46–48], Bichat’s buccal fat
pad [49] and nucleus pulposus MSCs [50], reduce their colony forming ability [50], induce
cellular senescence [47,50,51], alter MSC spindle-shape morphology [47], and upregulate
autophagy [50,51], compared with low glucose (1000 mg/L) media concentration. In
addition, MSCs cultured in low glucose media have been shown to maintain their differen-
tiation capacities and stemness [46,47,50], and increase antioxidant enzyme expression and
mitochondrial respiration [47]. In contrast with these results, a few studies have reported
that high glucose does not have an effect on the apoptosis and proliferation rates of adipose-
derived [52] and primary BM-MSCs [53], while it can significantly enhance proliferation of
telomerase-immortalized MSCs. While it is known that under hypoxic culture conditions
the metabolic activity of MSCs is enhanced [54], Deschepper et al., observed that under
continuous hypoxic culture, excess of glucose provided by high glucose concentration
media prevents glucose shortage during culture, thus preserving the proliferative capacity,
morphology, and viability of BM-MSCs [55].

4. Amino Acids

Already in the first days of cell culture, it became clear that for cultivation ex vivo
essential nutrients have to be supplied to cells, one of the most prominent categories being
amino acids. Well known in the field of cell culture are Dulbecco and Eagle, who pioneered
basal medium for cell culture that is still in use today, known as DMEM (Dulbecco’s
modified eagle’s medium), usually supplemented with fetal bovine serum (FBS) [56].
With the aspiration to get rid of ill-defined xenogeneic supplements and to transition
to chemically defined media, understanding and optimizing amino acid formulations is
becoming even more important. In the past amino acid concentrations in culture medium
have been chosen according to the consumption by the cells. However, degree of availability
of an amino acid can have influence on the cellular metabolism therefore refined studies on
their cellular metabolic properties are called for. Other parameters like solubility, stability,
and transport into the cells also determine availability and further consumption of amino
acids [57]. In the last years, it also became obvious that different mammalian cell types
have completely different amino acid requirements and that medium optimization in terms
of amino acid metabolism have to be fitted to the individual culture [58,59].

Of the 20 naturally occurring amino acids l-Arginine, l-Cysteine, l-Glutamine, l-
Histidine, l-Isoleucine, l-Leucine, l-Lysine, l-Methionine, l-Phenylalanine, l-Threonine,
l-Tryptophan, l-Tyrosine, and l-Valine are regarded as essential and Glycine, l-Alanine
l-Asparagine, l-Aspartic, l-Glutamic, l-Proline, and l-Serine as non-essential, thus gener-
ally supplied with the basal media are the essential ones, as non-essential ones can be
synthesized by the cells [60]. In a 2007 paper by Choi et al. [61], six different medium
compositions with essential amino acids (EAAs) and non-essential amino-acids (NEAAs)
were tested for their efficacy to promote proliferation of BM-MSCs. Their basal media were
DMEM (basically containing EAAs) and IMDM (Iscove’s modified Dulbecco’s Medium)
(basically containing EAAs and NEAAs), where either essential or non-essential amino
acids or both were additionally added. They could see that oversupply with essential
AAs as well as supplementation with non-essential AAs improved proliferation, whereas
oversupply of NEAAs resulted in lowered proliferation. In none of the medium conditions
did a change in stemness markers occur. Although this study did not perform design
of experiment to tune each amino acid concentration individually it is one step in the
direction of establishing improved culture conditions. Another approach to determine
the nutritional requirements of MSCs in particular is the analysis of metabolic patterns,
in detail which and in what concentration are amino acids consumed or secreted. They
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also tested whether this was consistent in 2D monolayer culture compared to dynamic
culture on microcarriers. EAAs were consumed in both set ups as expected, but NEAAs
were differently metabolized. MSCs consumed cysteine and proline in dynamic culture,
but secreted them in static culture. However, results of static and dynamic agree on alanine,
glutamate, glycine, and ornithine being produced, and arginine, asparagine, aspartate,
glutamine, serine, and tyrosine being consumed by the cells. This consumption was not
seen in other cell types before and might be unique to stem cells [62]. The difference of
amino acid metabolism from static to dynamic culture indicates that the mechanisms are
even more complex than thought, and optimizing medium composition is also influenced
by cultivation techniques. Regarding one specific amino acid, already Eagle, et al. [63]
describe the importance of glutamine for mammalian cell proliferation. Specifically for
BM-MSCs, both dos Santos, et al. [64] and Zhou, et al. [65] report improved proliferation
and very importantly maintenance of stemness. Additionally, oversupply of branched
chain AAs (BCAAs), valine, leucine, and isoleucine increased S/G2/M cell cycle phases
of a murine MSC lineage and could also improve the immunomodulatory capacity of the
cells [66]. Although the minimal supply of amino acids is provided by the basal medium,
these results show oversupply of certain amino acids can improve MSC proliferation,
stemness, or immunomodulatory effects. The choice of AAs to be supplemented has to be
made according to the intended application of the cells as well as the culture method.

5. Lipids

Lipids are next to amino acids, sugars, and nucleic acids as one of the major classes of
biomolecules that play important roles in the cell’s membrane structure, metabolism, and
signaling. During the last decades, it has become obvious that disturbances in the lipid
homeostasis are involved in the development of diseases like diabetes, cardiovascular dis-
orders, autoimmune diseases, and even cancer development [67]. Not only understanding
the lipidomics in vivo is of utter importance, but also the mechanisms of lipid metabolism
in vitro are important to improve cell-based treatment strategies of those disorders. The
most common forms of lipids in the cell are phosphatidylcholine (PC), phosphatidylserine
(PS), phosphatidylinositol (PI), phosphatidylethanolamine (PE) [68], and cholesterol, which
make up the outer cell membrane and the membrane of different organelles [60]. Next to
this, triglycerides serve as energy storage within reservoirs (lipid droplets). The triglyc-
erides can be broken down to fatty acids and used to produce ATP if needed. Lipids can
also bind to proteins, making them useable as signaling molecules for extra- or intracellular
messaging [60,69]. Almost all lipids necessary for basic cellular functions in mammalian
cells can be produced by themselves, only two are regarded as “essential”: Linoleic and
linolenic acid. However, in a lot of cases, even media without them allowed cells to prolifer-
ate, whereas addition drastically improved the results, suggesting differentiation between
minimal requirement and optimal performance [70]. Requirements needed for substantial
cellular proliferation, were traditionally met by the excess of lipids in the supplemented
FBS. With the increasing interest to omit animal products (discussed in detail in “human
platelet lysate” and “Serum-, xeno-free- and chemically defined media”), other delivery
strategies have to be found. The hydrophobic nature of lipids needs different strategies to
disperse lipids, allow cellular uptake, and remain stable in the medium. Three approaches
have been described: (1) Adsorption to a soluble carrier molecule, (2) self-assembly to
the required size, and (3) dispersion [71]. The mechanism in FBS is the adsorption to
the serum proteins, especially to the bovine serum albumin (BSA), a strategy that can be
used also in chemically defined media that are supplemented with some form of serum
albumin (human or bovine, natural or recombinant origin). Dispersion techniques include
liposomes, emulsion, and microemulsions and have the advantage that they can be used
in animal component free and even protein free medium (see “Serum-, xeno-free- and
chemically defined media”). These requirements are true for mammalian cell lines in
general, yet better understanding of the exact lipidomics especially within stem cells is
necessary to understand possible alterations during long term ex vivo maintenance and
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lead to establishment of improved cultivation environments [72]. For example, in a 2017
paper by Chatgilialoglu et al., they showed that the fatty acid composition of the membrane
of primary human fetal membrane-derived MSCs changed in 2D culture over time [73]. The
amount of omega-6 fatty acids decreased, whereas monounsaturated fatty acids (MUFA)
and omega-3 fatty acids increased. Additionally, Kilpinen et al., showed changes in mem-
brane composition of BM-MSCs [74]. In order to decrease the effect of prolonged culture on
the cell membranes, Chatgilialoglu et al., developed a cell medium supplement. Refeed®

supplement is a completely defined combination of lipids and lipophilic antioxidants in
ethanol. The supplementation was able to increase cellular proliferation compared to the
control, without changes in surface marker composition [73]. With the advances in the field
of omics, more complex interactions can be monitored. For example, differences in whole
lipidomics of early and late passage cells were investigated using ultraperformance liquid
chromatography coupled to mass spectrometry (UPLC–MS) and multivariate analysis.
Global analysis revealed that changes in lipid significance and alterations during BM-MSC
aging could be mostly contributed to chain length alterations and level of unsaturation [75].
An important aspect to consider was taken up by Fillmore et al. [76], who cultured BM-
MSCs in physiological levels of fatty acids and serum albumin, which are higher than in
standard cultivation conditions, to have a look on energy metabolism and survival. They
could show that the addition of physiological levels of palmitate, a saturated fatty acid,
significantly decreased BM-MSC viability in a time and concentration dependent manner.
They could rescue this decrease in survival with the addition of equal amounts of oleate, an
unsaturated fatty acid. By investigation of the metabolic activities, they conclude that de-
creasing fatty acid oxidation may be the source of cell death. These results are important to
understand limited efficacy of cell-based therapies at the moment. Decreasing the amount
of circulating saturated fatty acids in the patient during treatment might overcome current
limitations in cell homing and survival after implantation [76]. With novel lipidomic tools,
like, e.g., tandem MS-based, high mass accuracy-based, or multi-dimensional MS-based
shotgun lipidomics [77] and improved analysis software [78,79], more insight is gained
into the impact of lipids and fatty acids on MSCs ex vivo, which is the first step towards
finding solutions to prevent unwanted alterations. As a general rule, media supplemented
with FBS grants the cells a sufficient fatty acid supply, whereas human platelet lysate sup-
plemented media might (depending on the manufacturing method) and serum/xeno-free
medium need ancillary supply with lipids. Available are enriched forms or extracts from
natural sources like palm oil, wool, serum, or fish [80], however for xeno-free culture
synthetic alternatives to animal-derived supplements need to be used.

6. Growth Factors

Over the last decades, different growth factors have been widely studied for their
role of improving ex vivo expansion of human MSCs. Due to the pleiotropic behavior of
these factors, they can affect multiple biological behaviors like proliferation, morphology,
immunophenotype, survival, and differentiation capacity of MSCs. Selection of which
growth factor or combination of factors can promote physiological culture of MSCs in vitro,
is still under investigation. Many different growth factors have been investigated for their
potential effects on expanding MSCs. From them, fibroblast growth factors-2 and -4 (FGF-2,
FGF-4), platelet derived growth factor-BB (PDGF-BB), and epidermal growth factor (EGF)
have been reported to influence human MSC proliferation and survival in vitro [81].

6.1. Fibroblast Growth Factor-2 and -4

FGFs is involved in tissue repair and cell growth. FGF-2 used in many culture studies
can enhance the proliferative [40,82–87] and colony-forming capacity [88] of MSCs, sup-
press cellular senescence [87,89], reduce trypsinization time [84], and preserve the thin
spindle-shape morphology of MSCs [84,90]. In a study by Battula et al., primary bone
marrow and placental MSCs cultured in gelatin-coated flasks with serum-free medium
supplemented with FGF-2 demonstrated significantly higher proliferation rates than con-
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trol cultures with serum containing media in uncoated flasks. Combination of FGF-2 with
platelet derived growth factor-BB (PDGF) and/or transforming growth factor-β (TGF-β) in
the culture media was also reported to increase the proliferation of human MSCs [83,88,90]
and preserve the spindle-shaped morphology of MSCs in serum-free media conditions [90].
However, some studies have reported that FGF-2 supplement in human MSC cultures can
affect the phenotype and intrinsic properties of the cells [40,83]. FGF-4, similarly to FGF-2,
has been reported to increase proliferation, reduce autophagy, and delay the decrease of
cellular renewal capacity of human MSCs [87].

6.2. Platelet Derived Growth Factor-BB

PDGF-BB is a known regulatory factor of cellular growth and division. It has been
noted that when PDGF-BB is supplement alone [88,91] or in combination with other
factors [84,88,90] in the culture media, it can highly increase human MSC proliferation,
while inhibition of its receptor can significantly impair their proliferative capacity [92].
Regardless, reports have indicated that it can also decrease colony forming efficiency [88]
and osteogenic differentiation potential of cultured MSCs [91].

6.3. Epidermal Growth Factor

EGF and Heparin-Binding Epidermal Growth Factor (HB-EGF) have been shown
to play a role in promoting wound healing and cell growth. Human BM-MSC cultures
supplemented with EGF have demonstrated increased proliferation similar to the effect
of PDGF stimulated proliferation [88,93], but without diminishing their osteogenic poten-
tial [91,93]. Krampera et al., have demonstrated that BM-MSCs cultured with HB-EGF can
proliferate more rapidly without undergoing spontaneous differentiation, thus maintaining
their multilineage differentiation potential during culture [94].

In the study by Fraz et al., vascular endothelial growth factor (VEGF), and insulin-like
growth factor (IGF) in combination with FGF-2 were reported to improve MSC proliferation.
More interestingly, from the same study it was reported that high initial growth factors
contents in the MSC population, or pre-incubation of the cells with growth factors, can
significantly diminish their impact on the proliferative capacity of MSCs when added as
supplements in the culture medium [82].

Overall, the growth factors discussed above have been shown to be beneficial for MSC
expansion when added to the medium and consist considerable components for standard
culture media formulations. However, most studies have examined the effects of these
factors when added solely to the media. That gives room to further investigation and
analysis regarding the exerted effect from the combination of these growth factors during
MSC culture.

7. Trace Elements

Culture media apart from the organic substances, also contain inorganic elements such
as Cu, Mg, Mn, Zn, Se, Ca, and Fe in trace quantities. Serum used in cell cultures usually
contains many of these elements, and therefore many basal media do not include them
in the formulations. These trace elements can influence important biochemical functions
of the cells, but their effect and exact biological role on MSCs have not been thoroughly
investigated.

Zinc is involved with nucleic acid metabolizing enzymes and stabilization of cell
membranes. Serum used usually in cell cultures contain the necessary amounts of zinc for
cell growth and survival. For that reason, many basal media do not contain zinc. Addition
of ZnCl2 in adipose tissue derived MSCs culture has been shown to highly enhance their
proliferation, while zinc chelation reversed this effect. The exact mechanism of this effect
has not been fully elucidated yet [95].

Magnesium acts as a cofactor for many enzymatic processes and as a counter ion
for nucleic acids and ATP [96]. Human MSCs cultured with magnesium-conditioned
medium have demonstrated increased viability and proliferation. Furthermore,
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magnesium-conditioned medium with Zinc and/or Manganese additions were shown to
further promote human MSC proliferation and viability in the same study [97].

Calcium is an important element for a variety of biological functions including cell
attachment, signaling, and morphology. Studies have shown that increased concentrations
of extracellular calcium ions can significantly promote proliferation of BM-MSCs cultured
in serum [98] and serum-free [99] media conditions, compared to controls. Increased
calcium supplementation in the culture medium can also induce morphological changes
on MSCs, resulting in more spread out cytoskeleton arrangements, which could be an
indication towards their differentiation commitment [98].

Iron plays an essential role in cell metabolism and respiration. It protects cells from
oxidative damage acting as an enzyme cofactor, but it can also cause toxic effects. Its
delivery to the cells is controlled by transferrin, included in serum. That is why serum-
free media formulations have a higher risk to cause iron toxic effects to cells. Borriello
et al. have demonstrated that iron supplementation to the culture medium of primary
human BM-MSCs, can greatly enhance their proliferation and initiate their S phase. Iron
addition also hindered the innate osteogenic commitment of BM-MSCs, by blocking matrix
calcification and preserving their undifferentiated status [100].

Selenium is included in enzymes that prevent oxidative damage to the cells by reduc-
ing peroxides and other oxidative free radicals to non-harmful forms. In cell culture media
is usually added as selenium, sodium selenite, or selenium dioxide. The literature results on
the effects of selenium supplementation on human MSCs are quite diverse. Selenium can
restore the low antioxidative capacity of primary human BM-MSCs, and prevent cellular
damage [101]. Park et al., found out that selenium can enhance the proliferation of human
amniotic fluid MSCs, while combination of selenium with FGF-2 supplementation exerts
an additive effect on the proliferative capacity of the cells [102]. Conversely, other studies
have reported that selenium reduces the colony-forming ability of human MSCs [88] and
does not have any significant effect on their doubling time [101].

Copper is important for cell growth and development, notably of the skeleton by
affecting bone turnover and metabolism. Addition of copper in different concentrations
in human BM-MSC cultures has been reported to decrease their proliferation in a dose
dependent manner [103]. Since increased copper concentrations did not affect cell viability
or cell size to justify contact inhibition of proliferating cells, it was hypothesized that copper
could interfere with multiple cell cycle stages to hamper MSC proliferation [103].

Although studies have shown that trace elements included in the media can affect
the biological behavior and characteristics of MSCs, further investigation is required on
their exact roles and mechanisms. In addition, while performing cultures with serum-free
media, studies should pay attention to the source or amounts of trace elements added to
the MSC media.

8. Ascorbic Acid

Ascorbic acid acts as an antioxidant factor in cell cultures. Although it is not so com-
monly added in MSC media, studies have shown that it is involved in promoting MSC
growth and proliferation when supplied to the culture medium. The study of Choi et al.,
revealed that the addition of L-ascorbate-2-phosphate in the culture medium enhanced
the proliferation rate of human BM-MSCs in a dose-dependent manner [104]. Addition
of 250 µM of L-ascorbate-2-phosphate induces the highest proliferation rates without any
effect on cell morphology and MSC phenotype, while addition of 500 µM hinders the prolif-
eration [104]. Same results using the same concentration of ascorbic acid supplementation
were observed by other studies using human MSCs [83] from adipose tissue [105]. Another
study using also human BM-MSCs showed similar results with the addition of L-ascorbate-
2-phosphate up to 3 mM, but without differences between the concentrations tested [106].
In the same study, L-ascorbate-2-phosphate promoted MSC expansion from mononuclear
cell population. These results support that ascorbic acid is a beneficial additive for MSC
cultures.
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9. Human Platelet Lysate

As mentioned earlier, culture medium enrichment by the addition of fetal bovine
(fetal calf) serum (FBS/FCS) is still a common practice in many laboratories worldwide. It
is rich in hormones, vitamins, transport proteins, trace elements, spreading, and growth
factors [107,108]. In vivo, these are released upon blood coagulation and destined to help
repair the site of injury, while in vitro, they promote cellular growth. The production raises
both scientific as well as ethical concerns, in terms of xenogeneic compounds, reproducibil-
ity, and animal welfare, respectively. The whole blood needed is collected from unborn
calves, which are a “by-product” of the meat producing unit. The use of fetal animals
instead of adults is regarded to the low number of immunoglobulins in the calf serum.
Collection is performed by harvesting the blood from the umbilical vein or more invasively
directly from the heart by cardiac puncture. These procedures are performed right after
the mother dams’ neck has been cut to ensure fetal death by anoxia and blood loss. To
prevent suffering of the calf during the whole procedure, it has to be unconscious and
must not breathe air at any stage, however, such safeguards are only recommendations
and not legally defined [109]. After coagulation the liquid serum part is separated from the
solid blood clot by centrifugation and can be further processed (filtration, quality control,
packaging) for sale. When considering that in vitro cell culture is supposed to reduce the
need for animals and the associated painful procedures, using animal derived compounds
is contradistinctive. An estimation of the amount of FBS needed per anno leads to a calcu-
lated number of 1 million fetal calves necessary to meet the global requirements [109]. The
fact that the main production countries are situated in regions with less legal restrictions
concerning animal welfare, gives rise to even more ethical concerns regarding the use of
FBS. Furthermore, the dependence from global meat markets and price variations, adds
even more concerns [110,111].

On another aspect, addition of such ill-defined growth factor and protein cocktails
and especially xenogeneic compounds is also not in the spirit of good manufacturing
practice (GMP) guidelines and hinders transition of cell-based therapies to the clinics.
In a desperate search for alternatives, various derivatives of human blood have been
investigated [112]. Due to lower levels of growth factors and nutrients, plasma and serum
prepared from anti-coagulated or coagulated whole human blood, respectively, are not
widely used. However, human platelet lysate (hPL) has been shown to be an adequate
substitute for FBS. This blood derivative can be manufactured from platelet concentrates
by induction of bioactive molecule-release from the platelets. As platelet concentrates
(PCs) are of human origin, already routinely collected by blood banks for the treatment of
thrombocytopenia, and can be repurposed after a short shelf life of 5–7 days for research
purposes [113–118], and its use is not accompanied by ethical or animal welfare concerns.
Human platelet lysate has been used in cell culture already in the 1980s and by now has
even proven to be superior to FBS at the same concentration in regard to promoting cell
proliferation and maintaining MSC characteristics in several studies [113–117,119–125]. A
summary from selected studies from 2005 to 2020 is listed in Table 2. Only studies that
compared the performance to FBS as supplement were included. Used concentrations
ranged from as low as 0.1% hPL supplementation to 10%, where in a majority of the trials,
5% hPL performed similar to 10% FBS. Stemness characteristics could be maintained or
even improved, while one difference observed in some studies was a reversible change in
morphology in media with one or the other supplement, with generally smaller cell sizes
in hPL cultures. However, the mode of preparation may possibly influence the properties
of the hPL. PCs can be prepared in 3 different ways: By the platelet rich plasma (PRP)
method, from buffy coats, or by direct single donor platelet apheresis. For the PRP method
whole blood is centrifuged to separate red blood cells from platelet rich plasma which
is further centrifuged to reach the required concentration and material from 4–5 donors
is pooled to reach the desired volume [126]. For the second method 4 buffy coat units
from centrifuged whole blood are mixed with one plasma unit and centrifuged again,
followed by separation and leukocyte depletion. The only method producing single donor
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PCs is by platelet apheresis. Optionally a pathogen inactivation or irradiation step is then
performed. In order to produce hPL from the PCs there are again multiple options. A very
common, efficient, and economical method is using single or multiple freeze/thaw cycles
to lyse the platelets [113,116–118,120,123–125,127–129]. The concentrates are usually shock
frozen at either −30 ◦C or −80 ◦C and reheated to 37 ◦C. Next to that, platelets can be
activated by inducing thrombin generation, thus fibrinogen polymerization to fibrin and
platelet degranulation. This can be achieved by the addition of calcium salts or one step
further down the cascade, recombinant thrombin. Further methods are mechanical rupture
by sonication, sometimes in combination with freeze thaw cycles or solvent/detergent
treatment. With this in parallel to platelet activation, lipid enveloped viruses can be
inactivated. Generally, to allow for more consistency multiple hPL units are again pooled
(up to 109 units [130]). Lastly, any remaining fragments are removed, the pool is aliquoted
and controlled before release. In recent years multiple commercial options have become
available and some of them have already been under investigation in comparison to FBS
(see Table 2) [131–134]. Suppliers include Sigma-Aldrich, Merck, PL Bioscience, Compass
Biomedical and Stemcell Technologies. All of them offer their hPL in research grade, PL
Bioscience additionally offers GMP grade and even pharmaceutical grade quality. For all
hPL products in which fibrinogen is not depleted, heparin is needed to prevent medium
gelation (coagulation) during culture, which can hamper cell proliferation and due to
often porcine origin prevents the system from becoming fully humanized. To achieve
this either recombinant human heparin or fibrinogen depleted hPL should be used in the
future. In instances were only a small number of cells needs to be provided for a cell-based
therapy (CBT), thus lower culture medium amounts are required autologous hPL can be
used. Though in general, larger allogenic pooled hPL is regarded as the more promising
alternative, due to higher availability. The downside of pooling is the increased risk of
contamination with different pathogens.

All in all, hPL has proven to be equally suitable, if not an improvement over the
classically supplemented FBS, represents an alternative, and its usage is one important step
towards the establishment of xeno-free, humanized culture models.
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Table 2. Human platelet lysate (hPL) as alternative to bovine serum; selected studies from 2005 to 2020 including commercially available products. Information is provided on starting
material, preparation technique and culture conditions.

Starting
Material Solution Pooled (PC) Platelet Counts

(×109/mL)
Platelet Lysis

Expanded Cells Supplementation Outperformed
FBS? Ref.

(Freeze/Thaw) (Others)

Aph-PC Plasma 10 1 −80 ◦C - BM-MSC 5% yes [120]

BC-PC Plasma 10–13 0.95 −30 ◦C - UCB-MSC 10% yes [124]

Exp Aph-PC Plasma yes - −80 ◦C - BM-MSC 10% yes [113]

Exp Aph-PC Plasma - - −80 ◦C - BM-MSC 5% no [118]

Aph-PC Plasma - - −80 ◦C - BM-MSC 8% no [129]

Aph-PC Plasma - 1.0–1.3 - S/D AD-MSC 10% no [135]

Aph-PC Plasma 10 - −80 ◦C - BM-MSC,
UCB-MSC 5–10% yes [128]

BC-PC, leuko
depleted Plasma - - −80 ◦C - AD-SC 5% yes [123]

Aph-PC Plasma 4–6 don - −80 ◦C Sonication BM-MSC 10% yes [119]

BC-PC Plasma 2 - −30 ◦C - BM-MSC,
AD-MSC 2.5–10% yes [121]

BC-PC Plasma 2 - −30 ◦C Thrombin BM-MSC,
AD-MSC 2.5–10% yes [121]

BC-PC Saline 6 3.34 −80 ◦C - AD-MSC 5% yes [125]

BC-PC Plasma 6 3.58 −80 ◦C - AD-MSC 5% yes [125]

Exp Aph-PC Plasma 5 don 1 −80 ◦C CaCl2 BM-MSC 10% yes [114]

Exp BC-PC Plasma yes - −80 ◦C - BM-MSC 10% yes [117]

BC-PC, path.
Inactivated Add Sol 12 don 1 −80 ◦C - BM-MSC 10% yes [127]

BC-PRP Plasma 10–20 10 −196 ◦C Lyophilization,
Irradiation BM-MSC 5% yes [122]

PL-Serum - 49–109 - - CaCl2 20% w/v commercial
BM-MSC 10% yes [130]

BC-PC Plasma 2 2.03 −25 ◦C - AD-MSC 1–10% yes [116]
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Table 2. Cont.

Starting
Material Solution Pooled (PC) Platelet Counts

(×109/mL)
Platelet Lysis

Expanded Cells Supplementation Outperformed
FBS? Ref.

(Freeze/Thaw) (Others)

BC-PC TSOL 2 0.91 −25 ◦C - AD-MSC 1–10% yes [116]

Exp BC-PC Plasma 2 0.41 −25 ◦C - AD-MSC 1–10% yes [116]

Exp BC-PC TSOL 2 0.19 −25 ◦C - AD-MSC 1–10% yes [116]

Exp Aph-PC - 3–4 don - −80 ◦C - AD-MSC 0.1–1% yes [115]

Brand Name Supplier Pooled (PC)
Platelet Counts

(×109/mL)
Platelet Lysis Expanded Cells Supplementation Outperformed

FBS?
REF(freeze/thaw) (others)

PLTMAX Sigma Aldrich yes - - - AD-MSC 5% yes [134]

MesenCult hPL
media

Stemcell
Technologies yes - - - AD-MSC 10% yes [134]

PLUS™ hPL Compass
Biomedical yes - - - BM-MSC 5% yes [131]

PLTmax MERCK yes - - - AD-MSC 1–10% yes [132]

phPL PL BioScience yes - - BM-MSC 10% yes [133]

(Abbreviations: AD—adipose tissue derived, add sol—additive solution, Aph—apheresis, BC—buffy coat, BM—bone marrow derived, don—donor, Exp—expired, FBS—fetal bovine serum, MSC -mesenchymal
stem cell, PC—platelet concentrate, PL—platelet lysate, PRP—platelet rich plasma, S/D—solvent/detergent, UC—umbilical cord derived UCB—umbilical cord blood derived).
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10. Serum-, Xeno-Free-, and Chemically Defined Media

Next to the switch from bovine or other animal-origin sera to human platelet lysate,
other alternatives to fully humanize or potentially even develop chemically defined media
are investigated for various reasons. Improving cell growth as well as phenotype is of great
interest and specially to reduce the high variability encountered with non- or ill-defined
medium components. To understand all the different approaches, firstly the various
definitions used have to be examined. Chemically defined medium means that there is no
supplementation with unknown composition, this includes blood derived supplements
like serum, platelet lysates, but also plant hydrolysates. Highly purified components of
different origin or recombinant products but with exact concentrations, can be added. As
the origin can be from animals as well, chemically defined is not the same as animal-derived
component free. Animal-derived component free (ADCF) stands for medium without
supplements originating from animals, this usually includes humans as well. When no
supplementation of serum is necessary the medium is called serum-free (SF), but may
contain other protein fractions with plant or animal origin. As there could in both cases still
be hydrolysates from bacteria or yeast for the ADCF media or other animal derived protein
cocktails for the SF medium added, these terms not necessarily mean chemically defined.
The term xeno-free is especially tricky as it depends on the origin of the to be cultured cell
line. Xeno is of Greek origin and means “strange” and denotes compounds derived from a
different species. Therefore, for human MSCs medium with human serum or platelet lysate
is xeno-free, but the same media would not be if one would culture mouse MSCs in it [107].
Lastly, protein-free media are media that do not contain large proteins, but only small
peptides. In this case, one can already see the limitations associated to these definitions.
Where is the border to be set between protein and peptide? Further, recombinant human
proteins can be produced in either bacterial or other mammal cell lines. This again raises
question if they can be considered xeno-free and needs to be addressed in future media
formulations [136].

Considering human cells for cell-based therapies, omitting xenogeneic compounds
will rule out further immune reactions of the transplanted material and especially for bovine
serum, and also the risk of transmitting prion diseases such as spongiform encephalopathy.
Additionally, FBS production inevitably has high lot-to-lot variations, which requires
pretesting before a new lot can be used for culture of MSCs [137,138]. With the transition
to completely serum free chemically defined medium, further advantages arise. Blood-
derived components, whether they are of animal or human origin, are heterogenous and,
as already said, will inevitably have differences from batch to batch. This leads to less
reproducible results and also causes a more heterogenous cell population [139]. With the
use of serum-free medium (SFM), it can be specifically tailored for the needs of the MSC
fraction, enhancing selection already during isolation. Enhanced consistency is also in the
spirit of GMP regulation and thus the logical next step. There are already ready-to-use
media specifically for MSCs available from different suppliers that are either serum-free,
xeno-free, or both. To give a few examples, StemPro™ MSC SFM and StemPro™ MSC SFM
XenoFree™ (Thermo Fisher Scientific, Waltham, MA, USA), StemXVico (R&D Systems,
Minneapolis, MN, USA), PowerStem MSC1 (Pan Biotech, Aidenbach, Germany), MSC
NutriStem® XF (Biological Industries, Kibbutz Beit-Haemek, Israel), PRIME-XV MSC
Expansion SFM (IrvineScientific, Santa Ana, CA, USA), MesenCult™-ACF Plus (Stem Cell
Technologies, Vancouver, Canada), and MSCGM-CD (Lonza, Basel, Switzerland). Other
options are SFM designed, intended for culture of embryonic or induced pluripotent stem
cells (iPSCs) that are adapted to suit MSC as well, e.g., mTeSR (Stem Cell Technologies).
The advantage of these commercial options is that they comply to GMP regulations and
undergo strict testing by the supplier, and as they are premixed, handling times and
material requirements are minimized on the user side. Further, a lot-to-lot variation of
the individual components can also be averted. On the downside, however, the exact
formulations are not disclosed by the companies, and thus adaption and optimization
to the specific cell source or intended application is not possible, and in comparison to
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other media options they are costlier. A summary of tested media including the origin
of the cells they were tested on is listed in Table 4. Interestingly, in a study by Al-Saqi
from 2015, bone marrow derived cells did not perform well in Mesencult XF medium
compared to MSCs derived from adipose tissues. This further indicates unique needs of
different MSC populations. For the generation of chemically defined medium in-house all
aspects regarding medium ingredients and concentrations above are of great importance to
support MSC growth; optimization of serum albumin, fatty acids, trace minerals, glucose
content, and combination of growth factors.

Common supplements, next to what has been discussed before, include insulin, trans-
ferrin, and ethanolamine in combination with the trace element selenium (e.g., ITS, SITE).
The role of insulin is to help cells use glucose and amino acids, transferrin serves as iron
transport protein as free iron has toxic effects on cells [140] and ethanolamine is necessary
for phospholipid synthesis [141]. Exemplary compositions from different disclosed serum
free media include simpler compositions of only a few ingredients: IMDM supplemented
with bFGF, human albumin (most abundant protein in vertebrate plasma, important for
colloidal osmotic pressure and binding of ions, fatty acids, steroids and drugs [142]),
hydrocortisone (steroid hormone, promotes cell growth [143]), and SITE [144]. A more
complex chemically defined medium for hMSCs was patented already in 1995 by Mar-
shak [145]: IMDM supplemented with serum albumin, lipoprotein, transferrin, insulin,
MEM vitamins, MEM essential amino acids, MEM nonessential amino acids, sodium
pyruvate, GlutaMAX-I supplement (substitution for L-glutamine, which is more stable in
culture conditions [146]), folic acid (central role in one-carbon metabolism, important for
growth, differentiation, and survival [147]), Ascorbic acid 2-phosphate, Biotin (essential
vitamin, relevant for fatty acid synthesis, amino acid, and energy metabolism [148]), vita-
min B12 mix, trace element mix, FeSO4, nucleoside mix, antibiotic/antimycotic, and either
PDGF ββ homodimer or M 5-hydroxytryptamine (serotonin, micromolar amounts can
increase cell growth [149]). Both chemically defined and xeno-free is the formulation of Wu
et al. [150] (IMDM, l-glutamine, sodium bicarbonate, insulin, transferrin, serum albumin,
β-mercaptoethanol (potent reducing agent, prevents toxic levels of oxygen radicals [151]),
chemically defined lipid concentrate, MEM essential amino acids solution, MEM non-
essential amino acid solution, Vitamins solution, trace elements solution, hydrocortisone,
l-ascorbic acid-2-phosphate, fibronectin, progesterone (hormone, enhances immunomod-
ulatory function of MSCs [152]), putrescine (non-protein nitrogen base, associated with
proliferation in mammalian cells [153]), serotonin, epidermal growth factor, basic fibroblast
growth factor, platelet-derived growth factor, insulin-like growth factor) [150]. The exact
compositions of each of the three examples can be found in Table 3. Another option for
labs is to get a custom-made medium from a commercial vendor. Such tailormade media
can be procured from Cell Culture Technologies, a Swiss biotech company [154], or also
larger biotech suppliers like Thermo Fisher Scientific, R&D Systems, and Biological Indus-
tries. Improvement on current animal component and undefined media compositions is
the first step to improved cell culture concepts, further improvements could be made in
investigation of culture media that are designed to specifically meet the needs of the cells in
different “phases” of their life cycle, as current approaches do not consider such differences
during culture.

Although the classical serum supplemented medium is still widely used and produces
satisfying cell yields, transition away from animal-derived as well as poorly defined
medium components is an essential step towards clinical relevance and further product
development. Clearly, increased costs and challenges in the transition phase hinder a lot of
research groups to switch to chemically defined medium. However, even small changes,
one at a time, starting by omitting animal-derived products over to disposal of undefined
sera and ultimately even proteins can improve the cultivation system and ensure more
consistency.



Cells 2021, 10, 886 15 of 33

Table 3. Composition of three disclosed chemically defined cell culture media for MSCs.

Ref. [144] [145] [150]

Basal Media IMDM IMDM 17.7 g/L IDMD

Su
pp

le
m

en
te

d
W

it
h

17.91 ng bovine FGF/mL 5 mg/mL human serum albumin 5 mM l-glutamine

2.80 mg/mL human albumin 100 µg/mL human Ex-Cyte lipoprotein 3.024 g/L sodium bicarbonate

27. 65 µM hydrocortisone 2 µg/mL saturated human transferrin 10 mg/L rh insulin

1.18% SITE
(S4920; containing

0.5 µg/mL sodium selenite,
1.0 mg/mL bovine insulin,

0.55 mg/mL human
transferrin, 0.2 mg/mL
ethanolamine; 100-fold

concentrate)

10 µg/mL rh insulin 10 mg/L rh transferrin

1.0% 100 ×MEM vitamins 4 g/L rh serum albumin

0.89% MEM essential amino acids 55 µM β-mercaptoethanol

0.4% MEM nonessential amino acids 0.1% chemically defined lipid
concentrate

1 mM sodium pyruvate 2% MEM essential amino
acids solution

1 mM GlutaMAX-I supplement 1% MEM non-essential amino
acid solution

10 µg/mL folic acid 1% Vitamins solution

10 µM ascorbic acid 2-phosphate 0.1% trace elements solution

1.0 µg/mL Biotin 50 µg/L hydrocortisone

1.36 µg/mL vitamin B12 mix 50 mg/L l-ascorbic
acid-2-phosphate

500fold diluted trace element mix 5 mg/L rh fibronectin

4 × 10−8 M FeSO4 5 µg/L progesterone

10 µg/mL nucleoside mix
(ribonucleosides, 2′-deoxyribo-nucleosides,

uridine, and thymidine)

10 mg/L putrescine

2 mg/L serotonin

10 ng/mL rh EGF

1.0% antibiotic/antimycotic 10 ng/mL rh basic FGF

10–20 ng/mL rh PDGF ββ homodimer
or 10−5 to 10−6 M 5-hydroxytryptamine

10 ng/mL rh PDGF

10 ng/mL rh IGF

(Abbreviations: EGF—epidermal growth factor, FGF—fibroblast growth factor, rh—recombinant human, IGF—insulin-like growth factor,
IMDM—Iscove’s modified Dulbecco’s medium, MEM—minimum essential media, PDGF—platelet-derived growth factor).
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Table 4. Commercially available, chemically defined/serum-free/xeno-free media tested for expansion of hMSCs; including selected studies from 2010–2021. Information is given on
brand name, supplier, any added supplements, the cell source, cultivation parameters, and stem cell characteristics.

Basal Medium Supplier Add.
Supplements Cells Expanded Cultivation Time Outperformed

CTL Medium? Diff Capacity Cell Surface
Markers Ref.

MSCGM-CD Lonza - UC-MSC 5–7 passages n.t. unaltered unaltered [38]

MesenCult Stemcell
Technologies - hESC-derived MSCs - yes n.t. unaltered [155]

Mesencult-XF™ Stemcell
Technologies - AD-MSC, BM-MSC - yes

improved
(AD-MSC),
decreased
(BM-MSC)

altered (BM-MSC) [156]

StemPro MSC SFM
XenoFree™ Life Technologies - BM-MSC up to p4 no n.t. n.t. [139]

Mesencult-XF™ Stemcell
Technologies - BM-MSC up to p4 no unaltered unaltered [139]

BD Mosaic™
Mesenchymal Stem

Cell Serum-Free
media

BD Biosciences - BM-MSC up to p4 no unaltered unaltered [139]

StemPro® MSC SFM
XenoFree, Invitrogen

Life Technologies - AD-MSC, BM-MSC - yes altered unaltered [157]

StemPro MSC SFM
XenoFree™ Life Technologies PDGF-BB, bFGF,

TGF-β1 ASC line, BM-MSC up to p9 yes unaltered unaltered [158]

StemPro® MSC SFM Life Technologies PDGF-BB, bFGF,
TGF-β1 BM-MSC 8 passages no unaltered unaltered [159]

StemPro MSC SFM
Xenofree Life Technologies - BM-MSC, UC-MSC,

AD-MSC 7 days yes n.t. n.t. [160]

MSC Nutristem XF Biological
Industries - BM-MSC, UC-MSC,

AD-MSC 7 days yes n.t. n.t. [160]

MesenCult-XF Stemcell
Technologies - BM-MSC, UC-MSC,

AD-MSC 7 days yes n.t. n.t. [160]
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Table 4. Cont.

Basal Medium Supplier Add.
Supplements Cells Expanded Cultivation Time Outperformed

CTL Medium? Diff Capacity Cell Surface
Markers Ref.

StemXVivo SFM
Human MSC

Expansion Medium
R&D Systems - BM-MSC, UC-MSC,

AD-MSC 7 days yes n.t. n.t. [160]

RoosterNourish-MSC
XF RoosterBio, Inc. BM-MSC up to p5 no unaltered unaltered [161]

StemMACS-MSC
Expansion Media Kit

XF
Miltenyi Biotec BM-MSC up to p5 no unaltered unaltered [161]

MSC NutriStem XF Biological
Industries BM-MSC up to p5 no unaltered unaltered [161]

StemXVivo SFM
Human MSC

Expansion Medium
R&D Systems BM-MSC up to p5 no unaltered unaltered [161]

(Abbreviations: AD—adipose tissue derived, Add.—additional, BM—bone marrow derived, CD—chemically defined, CTL—control, diff—differentiation, hPL - human platelet lysate, MSC—mesenchymal stem
cell, n.t.—not tested, p—passage, SFM—serum free medium, UC—umbilical cord derived, XF—xeno-free).
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11. Hypoxia

Thinking of parameters outside of the culture medium, itself long-overlooked, is
the so called “normoxic” environment. When laboratories report culture of cells under
normoxic conditions, they mean ambient oxygen concentrations of 21%, yet the question
arises if this is really physiologically “normal” for the cultured cells. Some cell types in
the human body are adapted to these levels, like cells of the respiratory system, skin, and
the oral cavity. However, if we follow the dissolved oxygen within the blood stream to its
destination in organs and tissues, a lot of lower concentrations are the norm than what is
termed “normoxic”. Depending on the source tissue in vivo, oxygen levels between 18%
(lungs) and as low as 1% (cartilage, bone marrow) are found [162]. Therefore, the actual
physiological normoxic conditions for MSCs are actually rather low and are regarded as
hypoxia. One must also take into account that atmospheric oxygen levels are not the same
as the amount of oxygen dissolved in the medium. In case of a standard culture flask
in a typical incubator, 20% oxygen in the surroundings means an estimated dissolved
oxygen content of 100% in the medium. The amount of diffusion of oxygen into the
culture medium is determined by physical laws influenced by a plethora of parameters.
Ambient O2 concentration [137], O2 partial pressure determined by altitude, temperature,
culture volume, and surface area have to be taken into account and monitored closely for
studies on effect of oxygen levels on cells. With higher levels of dissolved oxygen other
problem can emerge, the formation of so-called reactive oxygen species (ROS), for example
peroxides, super-oxides, and hydroxyl radicals. Although they are a by-product in normal
cell metabolism, dramatic increase of them can harm cellular structures, this is termed
oxidative stress. Decrease of environmental O2 levels also reduces the formation of these
ROS [163,164]. In the last years more and more studies have indicated, that mimicking
the native niche conditions where the cells to be expanded reside in can improve their
viability, promote proliferation, and maintain their in vivo properties. An indication of how
important hypoxic conditions are in a cellular context is the large group of gene promoter
regions that are responsive to hypoxia (hypoxia responsive elements HRE). The key player
for activation is hypoxia inducible factor I (HIF1), which is a dimeric transcription factor.
Expression of the two subunits is not oxygen dependent, but stability of the α-subunit
is. Under normoxic conditions it is rapidly targeted for degradation, only in low oxygen
concentration it is able to accumulate intracellularly and associate with the β-subunit and
become functional [165]. In order to benefit from the positive effects of hypoxia in in vitro
settings, such an environment has to be established first. Practical considerations of pros
and cons of different methods shall be discussed.

One of the easiest and simplest forms is the acquisition of a hypoxic sub-chamber (for
example from BioSpherix [166] or Stemcell Technologies [167]), which is cost-saving and
easy to handle. On the downside is of course the inevitable reoxygenation events every
time a media change, microscopic evaluation, etc. is performed. Most models do not allow
for tight oxygen control; thus, leakage and consistent low levels cannot be secured. For
very low levels repeated re-flushing with nitrogen might be necessary to keep them. A bit
more controlled is the use of a standard incubator with nitrogen gas supply, which is able to
establish hypoxia by controlling oxygen levels next to humidity and temperature. However,
handling with the culture vessels still requires removal from the hypoxic environment
and especially for laboratories with multiple persons using the same hypoxia incubator,
constant open and closing can lead to unwanted reoxygenation. The increase of size can be
regarded as a two-sided coin; on one side, increased space allows for larger experiments
and multi-person use, but on the other side, more gas is needed to establish the desired
atmosphere as a sub-chamber does. Complete hypoxia workstations, optionally with
gloves, circumvent any disruptions in oxygen levels, but are very costly and require a
lot of attention for maintenance. They can be large enough to fit microscopes or other
imaging systems within and allow for routine maintenance of cells like media exchanges or
passaging in the desired environmental conditions [168]. Downsides to these workstations
are that, on the other hand, access to the inside, for example for cleaning, is rather difficult.
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A different approach is to only mimic hypoxia by addition of Cobalt Chloride (CoCl2) or
Deferoxamine Mesylate (DFO). These chelating agents can, after short hypoxic treatment,
stabilize HIF at non-hypoxic conditions. This treatment has many limitations, cannot
emulate real hypoxia, and has known and maybe even not yet discovered side effects on
the cells, thus we will not go further into detail on this method.

Although a general improvement of cell yield under hypoxic conditions can be con-
cluded (see Table 5) [61,113,169–181], some research groups could not confirm the beneficial
effects of hypoxic culture conditions [182–185]. This might also be caused by high varia-
tions within the applied parameters. First and foremost is the inconsistent definition of
hypoxia, tested O2 concentrations range from 1% to 5%, and secondly, fluctuations due to
the aforementioned different methods of establishing hypoxic conditions in a laboratory
setting are not taken into account. An important step towards harmonizing future results
is the employment of non-invasive monitoring of the dissolved oxygen. Another point
is the distinction between short term hypoxic treatments, or continuous culture under
physiological O2 levels. Cells destined for transplantation are sometimes pre-conditioned
for a few hours before administration, whereas other approaches try to keep cells already
starting from the isolation procedure [186] until the transplantation at lowered oxygen
concentrations.

Nevertheless, a switch from the prevailing atmospheric oxygen levels during culture
is an important advance in providing the cells a more physiological environment.
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Table 5. Hypoxic conditions for expansion of hMSC; selected studies from 2007–2020. Information is given on the cell source, exposure to hypoxic conditions and on stem cell characteristics.

Cells O2 (%) Exposure Time Outperformed 21%
O2? Diff Capacity Cell Surface

Markers

Other Cultivation
Parameters
Analyzed

Ref.

BM-MSC 2 6 weeks yes unaltered n.t. [169]

BM-MSC 1–3 16 h no n.t. n.t. HGF stimulation [184]

BM-MSC 5 up to p4 yes unaltered unaltered hPL [113]

BM-MSC 2 14 d yes n.t. unaltered [113]

UC-MSC 1.5–5 3 d yes n.t. n.t. [171]

BM-MSC 1–5 14 d no decreased unaltered [182]

BM-MSC 1 84 days yes improved unaltered [172]

BM-MSC 5 up to p3 yes improved unaltered [173]

AD-MSC 2 7 d yes improved unaltered [174]

BM-MSC 1 up to 90 d yes improved upregulated [175]

BM-MSC, AD-MSC,
AF-MSC, UCB-MSC 1 7 d

depending on cell
source (prenatal yes,

postnatal no)
n.t. n.t. prenatal + postnatal

material [185]

AD-MSC 2 up to 21 d yes unaltered unaltered [176]

UCB-MSC 5 5 d yes n.t. unaltered [179]

AD-MSC 5 up to 14 d yes n.t. slightly altered lean + obese donors [178]

BM-MSC 5 up to p15 yes unaltered n.t. donor age [177]

BM-MSC 1–4 up to p2 no unaltered unaltered [183]

UCB-MSC 3 5 d yes unaltered unaltered Ca2+ [61]

AD-MSC 5 up to p28 yes (until passage 23) n.t. n.t. [180]

AD-MSC 1 48 h yes

decreased
(osteogenic)

increased
(chondrogenic)

unaltered [181]

(Abbreviations: AD—adipose tissue derived, AF—amniotic fluid BM—bone marrow derived, diff—differentiation, HGF—human growth factors, hPL—human platelet lysate, MSC -mesenchymal stem cell,
n.t.—not tested, p—passage, UC—umbilical cord derived, UCB—umbilical cord blood derived).
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12. Isolation and Passage Cell Seeding Densities

Studies on cell seeding density, although limited, indicate that it does have an effect
on the proliferation rate and morphology of the cells. For primary MSCs, Sotiropoulou
et al., found that seeding density of 1000 cells/cm2 of primary bone marrow mononuclear
cells can result in significantly increased number of adherent MSCs after 1 week of culture
compared to higher seeding densities tested, without any alterations on their phenotype,
colony-forming, and immunosuppressive capacities [40]. Regarding passaged cells, studies
have shown that seeding BM-MSCs in low densities (50–100 cells/cm2) increases their
proliferation rates compared to higher densities (500–5000 cells/cm2) [40,187–189]. In
addition, studies using extremely low seeding densities (1.5–10 cells/cm2) have showed
that proliferation rates are inversely proportional to the seeding density of BM-MSCs,
and that the cells maintain their immunophenotype, and morphological and self-renewal
characteristics during culture [187,189–191]. Furthermore, differences in the seeding density
of MSCs can also alter their gene expression patterns. In particular, studies have shown that
human MSCs cultured in low seeding density (200 cells/cm2) can maintain their stem and
immunomodulatory gene expression profiles better than when seeded in higher density
(5000 cells/cm2) [192,193]. In general, seeding MSCs in low densities results in higher
proliferation rates and better preservation of their physiological characteristics. This is also
advantageous with regard to the limited number of primary MSCs that must be expanded
after isolation from the tissue.

13. Cell Detaching Methods

During in vitro expansion, MSCs are usually cultured for multiple passages. It has
been reported that human BM-MSCs are genetically stable and maintain their immunomod-
ulatory and differentiation capacities up to passage 4 [194]. Therefore, in clinical applica-
tions, MSCs can be successfully used up to 4 passages. During passaging, efficient cell
detachment is imperative in cultures of adherent cells like MSCs, without causing any
damage. The most common and effective methods involve the use of enzymatic solutions
to release the cells from the plastic culture surface by degrading their surface attachment
proteins. Trypsin is a serine protease and is the most common enzymatic mean for dissocia-
tion of adherent cells. An alternative to Trypsin is Accutase, a proteolytic and collagenolytic
enzymatic solution, which in comparison to Trypsin does not contain mammalian or bacte-
rially derived proteins. Trypsin and Accutase have been reported to be the most suitable
cell detaching reagents for human primary [195] and cultured MSCs [196–198] compared
to other enzymatic (Collagenase, Prolyl-specific Peptidase) and non-enzymatic cell dissoci-
ation solutions (cell dissociation buffers, ethylenediamine tetra-acetic acid (EDTA)) and cell
scraping, with significantly lower incubation times, increased viability, and higher yields
of detached cells. Although different types of culture surface coatings do not significantly
influence the effectiveness of enzymatic dissociation solutions, the results from the study
of Salzig et al., suggest that the efficiency of different enzymatic detachment methods and
corresponding cell viability following detachment are significantly affected by the culture
media used [198]. However, due to its proteolytic activity, it has been reported that trypsin
can significantly reduce the expression of MSC surface markers [195,198] and change the
expression of several non-coding RNAs, resulting in several transcriptomic changes [199].
Although some non-enzymatic buffers seem to minimize the adverse effects of other
methods on the detached MSCs [195,198,200], most studies suggest that due to the long
incubation times required for non-enzymatic detachment means, Trypsin is comparatively
a more beneficial method for quick preparation of MSC suspensions [195,196,200].

Although trypsinization is the most common laboratory method used for detaching
MSCs, in order to avoid the negative impact of proteolytic degradation on cell mem-
brane during enzymatic dissociation, new techniques are developed, for example ther-
moresponsive detachment of adherent cells. Adherent MSCs can be detached from the
culture surface by changing the temperature. However, without appropriate culture sub-
strate, MSCs must be exposed to very low/non-physiologic temperatures to facilitate
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detachment [201]. For this reason, a thermoresponsive polymeric coating, usually poly(N-
isopropylacrylamide), is applied on the cell culture surface. These thermoresponsive
surfaces have been reported to promote human MSC adhesion, colony formation and
proliferation [202,203], and enable their detachment with temperature reduction below a
critical solution temperature [202–204], without any changes on the MSC specific marker
profile and morphology [205,206]. A comparative study by Yang et al., suggests that ther-
moresponsive detachment of MSC from poly(N-isopropylacrylamide) films is as effective a
method as trypsinization [206]. These cell detachment methods are promising in avoiding
the proteolytic adverse effects of trypsin, although they are still not so well optimized as
routine methods such as trypsinization.

Other cell dissociation methods have been recently developed, using for example
acoustic pressure [207], light-induced plasmonic substrates [208], and non-enzymatic
arginine-based solutions [209] to detach adherent cells. These techniques show very
promising results, but their application on MSCs has not been investigated yet.

14. Conclusions

Human MSCs are considered one of the most prominent types of cells for cellular
therapies, due to their multipotent and regenerative capacities. However, due to their
limited number after isolation, in vitro expansion is required to achieve a sufficient number
of cells for clinical and research applications. This expansion step is usually performed in a
standard 2D culture setup that requires a lower number of seeded cells due to its robust-
ness and simplicity compared to more recently developed advanced 3D culture methods.
Therefore, in order to improve the relevance of in vitro applications, it is imperative to
preserve the physiological characteristics of MSCs during this necessary in vitro expansion
step.

Many optimization approaches for in vitro expansion of human MSCs focus on well-
formulated and chemically defined culture media. An overview of the major components
of culture media and additional optimization approaches and their biological effects men-
tioned in this review are summarized in Figure 1. However, apart from the components
mentioned there, there are many more included in their formulations that can potentially af-
fect cell behavior and were not given enough attention so far, and therefore require focused
research. Furthermore, apart from their chemical properties, alterations in the physical
properties of the media like osmolarity are often neglected. Similarly, the influences of expo-
sure to light and temperature on the characteristics and behavior of the cells during culture
are widely ignored and present a promising aspect for further investigation [210–213].

In order to maximize the benefits of these aspects on MSC culture, it is important that
each of these elements is thoroughly investigated, so their exact underlining mechanisms
and concomitant effects on the cells are identified. This can also expand the range and
validity of analytics for assessing MSC expansion cultures. Many of the studies in this
review evaluated the effect of different aspects on expanding MSCs by mainly measuring
total number of cells, doubling times or time to reach confluency. Although these methods
may give representative indications of the effects on cultured MSCs, due to the different
metric approaches, comparison and relevance between the results are not always accurate.
In addition, these methods only cover cell attributes like proliferation and growth rates.
Thereby, possible differences in a more thorough biological level, like gene expression,
or surface marker and proteomic alterations, are often disregarded. Attempts to identify
alterations on the cells immunomodulatory profile by prolonged ex vivo cultivation have
been made in “standard” cultivation settings [214], as understanding the cellular response
to expansion can influence the therapeutic potential of a CBT. Optimization approaches can
also greatly influence these cell properties, which can be even more relevant for treatment
success than solely greater cell numbers. For that reason, the introduction of specific criteria
and analytics for the evaluation of the effects of different aspects during in vitro expansion
of human MSCs, similar for example to the ones the ISCT established for defining MSCs,
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would be beneficial for the significance and relevance of future studies in this research
topic.

Figure 1. Schematic overview of the aspects improving the standard MSC cultivation setup discussed in this review. The
beneficial biological effects are summarized for each topic.

While most of the elements mentioned in this review have been proven to be beneficial
for human MSC in vitro cultures when examined solely, the impact of the combination
of different elements should also be investigated. Most papers studied only one param-
eter, and only rarely were two investigated. For future media composition optimization,
multiparametric analysis with carefully considered design of experiments should reveal
more information on the interplay of different components. Furthermore, MSCs inherently
present high donor and source variability in their characteristics and properties. For that
reason, some of the studies included in this review have reported different effects of the
same investigated in vitro culture parameter on different types of MSCs. Therefore, further
research should be directed towards formulation of MSC type-specific culture media and
protocols to avoid variability in preserving the physiological status of cultured MSCs.

In conclusion, the approaches discussed in this review constitute the basic princi-
ples for MSC culture and seem to be advantageous for the preservation of physiological
MSC characteristics during in vitro expansion. To fully recapitulate the in vivo conditions,
further strategies such as 3D passage free culture will have to be developed further. The
purpose of this review is to provide the readers with a broad variety of up-to-date ap-
proaches on standard expansion of human MSCs, that can help them optimize their current
culture protocols and improve the efficacy and physiological relevance of their MSC cul-
tures, as well as serve as a baseline for additional investigation and further optimization of
standard cultivation of MSCs in vitro.
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2D two-dimensional
3D three-dimensional
ADCF animal-derived component free
BM-MSCs bone marrow-mesenchymal stem cells
EAAs essential amino acids
EGF epidermal growth factor
FBS fetal bovine serum
FGF-2 and -4 fibroblast growth factor-2 and -4
GMP good manufacturing practice
HB-EGF heparin-Binding Epidermal Growth Factor
hPL human platelet lysate
HIF1 hypoxia inducible factor I
IGF insulin-like growth factor
ISCT International Society for Cellular Therapy
MSC(s) mesenchymal stem cell(s)
NEAAs non-essential amino-acids
PDGF-BB platelet derived growth factor-BB
PCs platelet concentrates
ROS reactive oxygen species
PRP platelet rich plasma
SF serum-free
VEGF endothelial growth factor
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